
1 SSG EMBEDDED SOLUTIONS | Ph. No. 7123559635

SSG EMBEDDED SOLUTIONS

SSG
info@ssges.co.in

mailto:info@ssges.co.in

2 SSG EMBEDDED SOLUTIONS | Ph. No. 7123559635

DEVELOPMENT KIT of

AVR

DOCUMENTATION

List of Contents

3 SSG EMBEDDED SOLUTIONS | Ph. No. 7123559635

Page No

1. Description of 1-3
• Introduction

• Pin Diagram

• Specifications

• Application

• Material Required

2. Installing Software 4-9
• Usbaspv2011_Proteus8.3 Files

• Zadig-2.7 Driver Installation

• Installer-7.0.2389-full

3. Examples 12-30
• LED Blinking

• LED chaser

• Buzzer

• LCD

• Relay

• Seven Segment Display

• RTC

• Keypad

1 SSG EMBEDDED SOLUTIONS | Ph. No. 7123559635

Introduction

ATmega32 is eight-bit higher enactment microcontroller, it is manufactured by an
Atmel (it is a designer and builder of different semiconductors materials). It is founded
on enriched RISC which stands for (Reduced Instruction Set Computing) design which
consists of 131 (one thirty-one) potent commands. Mostly commands implement in
one mechanism sequence. The maximum frequency at which it operates sixteen MHz.
It delivers a subtle equilibrium among enactment and balance. It is the Pico Power sort
of the normal ATmega328 kind which permits it to work below lesser voltage and
power necessities, nearly 1.62 volts.

.

This module consists of one-kilo byte EEPROM (Electrically Erasable Programmable

Read-Only Memory), two kilobyte SRAM (static RAM), 54 inputs and 69 general

persistence output lines, thirty-two universal persistence functioning registers, a

JTAG (Joint Test Action Group) interfacing for border scanning and onboard repairing

or debugging.

Pin Diagram

https://www.theengineeringprojects.com/2017/08/introduction-to-atmega328.html

2 SSG EMBEDDED SOLUTIONS | Ph. No. 7123559635

Specifications

• 32 x 8 general working purpose registers.

• 32K bytes of in system self programmable flash program memory

• 2K bytes of internal SRAM

• 1024 bytes EEPROM

• Available in 40 pin DIP, 44 lead QTFP, 44-pad QFN/MLF

• 32 programmable I/O lines

• 8 Channel, 10 bit ADC

• Two 8-bit timers/counters with separate prescalers and compare modes

• One 16-bit timer/counter with separate prescaler, compare mode and capture
mode.

• 4 PWM channels

• In system programming by on-chip boot program

• Programmable watch dog timer with separate on-chip oscillator.

• Programmable serial USART

• Master/slave SPI serial interface

Application

• It used in different temperature control systems.

• It used in the different analog signal calculation and management techniques.

• It used in different entrenched schemes like chocolate apparatus, peddling
mechanism.

• It used for controlling the motor.

• It used for Numerical signal handling.

• It used for Marginal Interfacing scheme.

Material Required

• USB Cable

• Flat Ribbon Cable

• AVR Cable

3 SSG EMBEDDED SOLUTIONS | Ph. No. 7123559635

Usbaspv2011_Proteus8.3 Files

usbasp.2011-05-28.tar.gz (519 kB)

Open AVR folder---→Open Usbaspv2011_Proteus8.3Files folder--→

Open progisp(application-577KB) file --→this will provide following window

Steps:

1) At first connect AVR kit by using USB cable-→this will highlight Program State

PRGISP

https://www.fischl.de/usbasp/usbasp.2011-05-28.tar.gz

4 SSG EMBEDDED SOLUTIONS | Ph. No. 7123559635

2) Move cursor on select chip--→select proper IC ie Atmega32A

3) Load program from-→Load Flash--→select your Hex file and click on open

Ut

---then click on Auto

5 SSG EMBEDDED SOLUTIONS | Ph. No. 7123559635

4) See the output on your kit

6 SSG EMBEDDED SOLUTIONS | Ph. No. 7123559635

Zadig-2.7 Driver Installation

• Install drivers with Zadig When you plug your RTL device in, for the first time,

Windows may request a driver, or automatically install a driver from Microsoft

- this is OK as it will be replaced in the next few steps using Zadig.

• Important: Do not install the software on the CD that comes with the device.

• Download the latest version of Zadig from: http://zadig.akeo.ie

• You will need to use 7zip to extract it from the .7z file: http://www.7-zip.org

• Or you can download the version 2.1.1 Zipped from here:

http://www.theremino.com/wp-content/uploads/files/zadig_2.1.1.zip

• Run the Zadig.exe file and you should see the following with an empty list.

Step 1: Plug in USBASP

Step 2: Install Zadig

Step 3: Open Option

Step 4 : Check List All Devices

http://zadig.akeo.ie/
http://www.7-zip.org/
http://www.theremino.com/wp-content/uploads/files/zadig_2.1.1.zip

7 SSG EMBEDDED SOLUTIONS | Ph. No. 7123559635

Step 5 : Select USB ASP

Step 6 : Select Libusb- win32

Step 7 : Click Reinstall Driver

Step 8 : Check Your Device Manager

8 SSG EMBEDDED SOLUTIONS | Ph. No. 7123559635

Installer-7.0.2389

1)Download Microchip Studio (Latest):

Microchip Studio for AVR and SAM Devices 7.0.2542 Web Installer

2)Run the Atmel Studio Installer

3) Accept the License Terms. ...

4) Select Required Microcontroller Architecture.

9 SSG EMBEDDED SOLUTIONS | Ph. No. 7123559635

1. Software Framework and Example Projects. ...

2. System Validation. ...

3. Installation Started. ...

4. System Restart. ...

5. Completing Installation

6. Click following icon

7) Following window will open

10 SSG EMBEDDED SOLUTIONS | 7123559635

8) Select New Project

9) Select GCC C Executable Project C/C++

10)Select OK

11) Device Selection

Atmega32A ------→OK

12) Write a program

13)Build Solution

Build Succeeded

File is created

14) Go to

Open progisp(application-577KB) file --→this will provide following window

11 SSG EMBEDDED SOLUTIONS | 7123559635

Load program from-→Load Flash--→select your Hex file as follow

Document---→Atmel Studio7-----→7.0----→Gcc Aplication1---→Gcc Aplication---------

→main

12 SSG EMBEDDED SOLUTIONS | 7123559635

LED

It is most widely used semiconductor which emit either visible light or invisible

infrared light when forward biased. Remote controls generate invisible light. A Light

emitting diodes (LED) is an optical electrical energy into light energy when voltage is

applied.

These are the applications of LEDs:

• Digital computers and calculators.

• Traffic signals and Burglar alarms systems.

• Camera flashes and automotive heat lamps

• Picture phones and digital watches.

13 SSG EMBEDDED SOLUTIONS | 7123559635

/*

* ATmega32_LED_Blinking.c

*/

#define F_CPU 1000000UL /* Define CPU frequency here 8MHz */

#include <avr/io.h>

#include <util/delay.h>

int main(void)

{

DDRC = 0xF0; /* Make all pins of PORTD as output pins */

while (1)

{

/* Blink PORTD infinitely */

PORTC = 0x00;

_delay_ms(500); /* Delay of 500 milli second */

PORTC = 0xF0;

_delay_ms(500);

}

}

LED Blinking Code

14 SSG EMBEDDED SOLUTIONS | 7123559635

/*

* ATmega32_LED_Blinking.c

*/

#define F_CPU 1000000UL /* Define CPU frequency here 8MHz */

#include <avr/io.h>

#include <util/delay.h>

int main(void)

{

DDRC = 0b11110000;

_delay_ms(500);; /* Make all pins of PORTB as output pins */

while (1)

{

/* Blink PORTB infinitely */

PORTC = 0b10000000;// pin 0 of port c set HIGH

_delay_ms(100); /* Delay of 100 milli second */

PORTC = 0b01000000;// pin 1 of port c set HIGH

_delay_ms(100); /* Delay of 100 milli second */

_delay_ms(100); /* Delay of 100 milli second */

PORTC = 0b00100000;// pin 2 of port c set HIGH

_delay_ms(100); /* Delay of 100 milli second */

PORTC = 0b00010000;// pin 3 of port c set HIGH

_delay_ms(100); /* Delay of 100 milli second */

}

}

LED chaser Code

15 SSG EMBEDDED SOLUTIONS | 7123559635

#define F_CPU 1000000UL

#include <avr/io.h>

#include <util/delay.h>

int main()

{

PORTD=0x00;

DDRD=0xfd;

while(1)

{

PORTD=0x00;

_delay_ms(1000);

PORTD=0xfd;

_delay_ms(1000);

}

}

Buzzer

A buzzer is an electronic device that generates sound by converting electrical energy

into sound energy. It typically consists of a piezoelectric crystal, which expands and

contracts when an alternating current is applied to it, creating sound waves.

Buzzers are commonly used in a wide range of applications such as alarms, timers,

and warning systems. They can also be used in electronic devices such as mobile

phones, computers, and other electronic devices to generate different sounds and

tones.

Buzzer Code

16 SSG EMBEDDED SOLUTIONS | 7123559635

LCD

The term LCD stands for liquid crystal display. It is one kind of electronic display

module used in an extensive range of applications like various circuits & devices like

mobile phones, calculators, computers, TV sets, etc. These displays are mainly

preferred for multi-segment light-emitting diodes and seven segments. The main

benefits of using this module are inexpensive; simply programmable, animations, and

there are no limitations for displaying custom characters, special and even

animations, etc.

The features of this LCD mainly include the following.

• The operating voltage of this LCD is 4.7V-5.3V
• It includes two rows where each row can produce 16-characters.
• The utilization of current is 1mA with no backlight
• Every character can be built with a 5×8 pixel box
• The alphanumeric LCDs alphabets & numbers
• Is display can work on two modes like 4-bit & 8-bit

https://www.elprocus.com/difference-alphanumeric-display-and-customized-lcd/
https://www.elprocus.com/light-emitting-diode-led-working-application/

17 SSG EMBEDDED SOLUTIONS | 7123559635

LCD Code

/*

* GccApplication6.c

*

* Created: 12/14/2022 3:32:25 PM

* Author : Praful

*/

//#include <avr/io.h>

/*

LCD16x2 4 bit ATmega16 interface

http://www.electronicwings.com

*/

//#ifndef F_CPU

#define F_CPU 1000000UL // 16 MHz clock speed

//#endif

#define D4 eS_PORTB4

#define D5 eS_PORTB5

#define D6 eS_PORTB6

#define D7 eS_PORTB7

//#define RS eS_PORTB0

//#define EN eS_PORTB2

//#define E eS_PORTB3

#define Back_light PORTB

//#define EN PB2

//#define F_CPU 8000000UL /* Define CPU Frequency e.g. here

its 8MHz */

/* Include inbuilt defined Delay header file */

//#include "lcd.h" //Can be download from the bottom of this article

#include <avr/io.h> /* Include AVR std. library file */

#include <util/delay.h>

#define LCD_Dir DDRB /* Define LCD data port direction */

#define LCD_Port PORTB /* Define LCD data port */

#define RS PB0 /* Define Register Select (data

reg./command reg.) signal pin */

#define EN PB2 /* Define Enable signal pin */

#define BL PB3

void LCD_Command(unsigned char cmnd)

{

LCD_Port = (LCD_Port & 0x0F) | (cmnd & 0xF0); /* sending upper nibble */

LCD_Port &= ~ (1<<RS); /* RS=0, command reg. */

http://www.electronicwings.com/

18 SSG EMBEDDED SOLUTIONS | 7123559635

LCD_Port |= (1<<EN); /* Enable pulse */

_delay_us(1);

LCD_Port &= ~ (1<<EN);

_delay_us(200);

LCD_Port = (LCD_Port & 0x0F) | (cmnd << 4); /* sending lower nibble */

LCD_Port |= (1<<EN);

_delay_us(1);

LCD_Port &= ~ (1<<EN);

_delay_ms(2);

}

void LCD_Char(unsigned char data)

{

LCD_Port = (LCD_Port & 0x0F) | (data & 0xF0); /* sending upper nibble */

LCD_Port |= (1<<RS); /* RS=1, data reg. */

LCD_Port|= (1<<EN);

_delay_us(1);

LCD_Port &= ~ (1<<EN);

_delay_us(200);

LCD_Port = (LCD_Port & 0x0F) | (data << 4); /* sending lower nibble */

LCD_Port |= (1<<EN);

_delay_us(1);

LCD_Port &= ~ (1<<EN);

_delay_ms(2);

}

void LCD_Init (void) /* LCD Initialize function */

{

LCD_Dir = 0xFF; /* Make LCD command port direction as

o/p */

_delay_ms(20); /* LCD Power ON delay always >15ms */

LCD_Port |= (1<<BL);

LCD_Command(0x33);

LCD_Command(0x32); /* send for 4 bit initialization of

LCD */

LCD_Command(0x28); /* Use 2 line and initialize 5*7

matrix in (4-bit mode)*/

LCD_Command(0x0c); /* Display on cursor off*/

LCD_Command(0x06); /* Increment cursor (shift cursor to

right)*/

LCD_Command(0x01); /* Clear display screen*/

19 SSG EMBEDDED SOLUTIONS | 7123559635

_delay_ms(2);

LCD_Command (0x80); /* Cursor 1st row 0th position */

}

void LCD_String (char *str) /* Send string to LCD function */

{

int i;

for(i=0;str[i]!=0;i++) /* Send each char of string till the

NULL */

{

LCD_Char (str[i]);

}

}

void LCD_String_xy (char row, char pos, char *str) /* Send string to LCD with

xy position */

{

if (row == 0 && pos<16)

LCD_Command((pos & 0x0F)|0x80); /* Command of first row and required

position<16 */

else if (row == 1 && pos<16)

LCD_Command((pos & 0x0F)|0xC0); /* Command of first row and required

position<16 */

LCD_String(str); /* Call LCD string function */

}

void LCD_Clear()

{

LCD_Command (0x01); /* Clear display */

_delay_ms(2);

LCD_Command (0x80); /* Cursor 1st row 0th position */

}

int main()

{

LCD_Init(); /* Initialization of LCD*/

LCD_String("SSG"); /* Write string on 1st line of LCD*/

LCD_Command(0xc0); /* Go to 2nd line*/

LCD_String("Hello World"); /* Write string on 2nd line*/

while(1);

20 SSG EMBEDDED SOLUTIONS | 7123559635

Relay

Relays are the switches that aim at closing and opening the circuits electronically as
well as electromechanically. It controls the opening and closing of the circuit contacts
of an electronic circuit. When the relay contact is open (NO), the relay isn’t energized
with the open contact. However, if it is closed (NC), the relay isn’t energized given the
closed contact. However, when energy (electricity or charge) is supplied, the states are
prone to change.

Relays are normally used in the control panels, manufacturing, and building
automation to control the power along with switching the smaller current values in a
control circuit. However, the supply of amplifying effect can help control the large
amperes and voltages because if low voltage is applied to the relay coil, a large voltage
can be switched by the contacts.

21 SSG EMBEDDED SOLUTIONS | 7123559635

#define F_CPU 1000000UL

#include <avr/io.h>

#include <util/delay.h>

int main()

{

PORTB=0x0f;

DDRB=0x0b;

while(1)

{

PORTB=0x00;

_delay_ms(1000);

PORTB=0x0b;

_delay_ms(1000);

}

}

Relay Code

22 SSG EMBEDDED SOLUTIONS | 7123559635

Seven Segment Display

Seven segment displays are important display units in Electronics and widely used to

display numbers from 0 to 9. It can also display some character alphabets like

A,B,C,H,F,E etc. It’s the simplest unit to display numbers and characters. It just

consists 8 LEDs, each LED used to illuminate one segment of unit and the 8th LED used

to illuminate DOT in 7 segment display. We can refer each segment as a LINE, as we

can see there are 7 lines in the unit, which are used to display a number/character.

We can refer each line/segment "a,b,c,d,e,f,g" and for dot character we will use "h".

There are 10 pins, in which 8 pins are used to refer a,b,c,d,e,f,g and h/dp, the two

middle pins are common anode/cathode of all he LEDs. These common

anode/cathode are internally shorted so we need to connect only one COM pin.

There are two types of 7 segment displays: Common Anode and Common Cathode:

Common Anode: In this all the Negative terminals (cathode) of all the 8 LEDs are
connected together (see diagram below), named as COM. And all the positive
terminals are left alone.

Common Cathode: In this all the positive terminals (Anodes) of all the 8 LEDs are
connected together, named as COM. And all the negative thermals are left alone.

23 SSG EMBEDDED SOLUTIONS | 7123559635

#define F_CPU 1000000UL

#include <avr/io.h>

#include <util/delay.h>

#define LED_direction DDRC

#define LED_PORT PORTC

/* define LED Direction */

/* define LED PORT */

int main(void)

{

LED_direction |= 0x0f;

LED_PORT = 0x0f;

/* define LED port direction is output */

char array[]={0,1,2,3,4,5,6,7,8,9};

/* write BCD value for CA display from 0 to 9 */

while(1)

{

for(int i=0;i<10;i++)

{

LED_PORT = array[i];/* write data on to the LED port */

_delay_ms(1000); /* wait for 1 second */

}

}

}

Seven Segment Display Code

24 SSG EMBEDDED SOLUTIONS | 7123559635

RTC

• Real Time Clock (RTC) is used to track the current time and date. It is generally

used in computers, laptops, mobiles, embedded system applications devices,

etc.

• In many embedded systems, we need to put time stamps while logging data

i.e. sensor values, GPS coordinates, etc. For getting timestamps, we need to

use RTC (Real Time Clock).

• Some microcontrollers like LPC2148, LPC1768, etc., have on-chip RTC. But in

other microcontrollers like PIC, and ATmega16/32, do not have on-chip RTC.

So, we should use an external RTC chip

Specification of DS1307

• I2C Interface: Standard I2C interface, with 7-bit addressing

• SRAM Memory: 56 bytes of battery-backed SRAM

25 SSG EMBEDDED SOLUTIONS | 7123559635

RTC Code

/*

* avr_lcd_1.c

*

* Created: 10-Oct-23 9:25:00 AM

* Author : user

*/

#include <avr/io.h>

#include <util/delay.h>

#include <lcd.h>

#include "clock.h"

void Wait()

{

uint8_t i;

for(i=0;i<20;i++)

_delay_loop_2(0);

}

void write_new_time(void)

{

LCDClear();

LCDWriteString("press1toWrtNew");

LCDWriteStringXY(0,1,"newtime, 2toExit");

while(1)

{

int i;

i = PINA;

i = i & 0x0f;

if (i == 0x07)

{

LCDClear();

LCDWriteString("writing_newTime");

PORTC=0xef;

uint8_t hours = 4, minutes = 52, seconds = 0, meridian = 1;//

change these values if you want to reset the time

SetHour(hours);

SetMinute(minutes);

SetSecond(seconds);

26 SSG EMBEDDED SOLUTIONS | 7123559635

SetAmPm(meridian);

_delay_ms(3000);

PORTC=0xff;

return;

}

if (i == 0x0b)

{

PORTC=0xdf;

LCDClear();

LCDWriteString("SwitchingToRead");

LCDWriteStringXY(0,1,"mode ... ");

_delay_ms(3000);

PORTC=0xff;

return ;

//goto back2main;

}

_delay_ms(100);

}

}

int main()

{

DDRA=0x00;

PORTA =0xff;

DDRC=0xff;

PORTC=0xff;

//Wait Util Other device startup

_delay_ms(500);

//Initialize the LCD Module

LCDInit(LS_NONE);

DDRB|=(1<<PB3);

PORTB|=(1<<PB3);

LCDWriteString("LCD_initialized!");

_delay_ms(3000);

//ClockInit();

//LCDWriteStringXY(0,1,"clock_init");

//_delay_ms(1000);

//Initialize the Clock Module

if(ClockInit()==0)

{

//If we fail to initialize then warn user

LCDClear();

LCDWriteString("Error !");

27 SSG EMBEDDED SOLUTIONS | 7123559635

LCDWriteStringXY(0,1,"DS1307 Not Found");

while(1); //Halt

}

write_new_time();

char Time[12]; //hh:mm:ss AM/PM

//Now Read and display time

while(1)

{

GetTimeString(Time);

LCDClear();

LCDWriteString("AVR_Rocks!!!");

LCDWriteStringXY(3,1,Time);

LCDGotoXY(17,1);

_delay_ms(500);

}

}

28 SSG EMBEDDED SOLUTIONS | 7123559635

Keypad

we use single I/O pin of a microcontroller unit to read the digital signal, like a switch

input. In few applications where 9, 12, 16 keys are needed for input purposes, if we

add each key in a microcontroller port, we will end up using 16 I/O ports. This 16 I/O

ports are not only for reading I/O signals, but they can be used as peripheral

connections too, like ADC supports, I2C, SPI connections are also supported by those

I/O pins. As those pins are connected with the switches/keys, we can’t use them but

only as I/O ports.

29 SSG EMBEDDED SOLUTIONS | 7123559635

Keypad Code

// This code demonstrates the 4x4 keypad array interfaced with ATmega32a �C

at PORTB,

// Since, the output response of the key_presses are being displayed on the

hardwired 7 segment display which is using BCD decoder,

// it can only display the output in proper form upto 0-9 digits, the rest of

the key_responses are displayed in terms of symbols as follows:

/*

DCBA BCD_output_responses on 7 seg display

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

_

1010 |_ (A)

_

1011 _| (B)

1100 |_| (C)

_

1101 |_

_ (D)

1110 |_ (E)

|_

1111 (F)

*/

#define F_CPU 1000000UL

#include <avr/io.h>

#include <util/delay.h>

uint8_t GetKeyPressed()

{

uint8_t r,c;

PORTB|= 0XF0;

for(c=0;c<4;c++)

30 SSG EMBEDDED SOLUTIONS | 7123559635

{

DDRB&=~(0XFF);

DDRB|=(0X01 << c);

for(r=0;r<4;r++)

{

if(!(PINB & (0X10 << r)))

{

return (r+(c*4));

}

}

}

return 0XFF;//Indicate No key pressed

}

int main(void)

{

DDRC|=((1<<PC0)|(1<<PC1)|(1<<PC2)|(1<<PC3));

PORTC&=~((1<<PC0)|(1<<PC1)|(1<<PC2)|(1<<PC3));

char array_1[]={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};

uint8_t key;

while(1)

{

key=GetKeyPressed(); //Get the keycode of pressed key

PORTC=array_1[key];

}

}

