
1 SSG EMBEDDED SOLUTIONS | Ph. No. 7123559635

SSG EMBEDDED SOLUTIONS

SSG
info@ssges.co.in

mailto:info@ssges.co.in

2 SSG EMBEDDED SOLUTIONS | Ph. No. 7123559635

DEVELOPMENT KIT of

PIC16f877a MCU

DOCUMENTATION

3 SSG EMBEDDED SOLUTIONS | Ph. No. 7123559635

List of Contents

Page No

1. Description of 1-3
• Introduction

• Pin Diagram

• Specifications

• Application

2. Installing Software 4-9
• MPLAB IDE

• XC8 Compiler

3. Examples 8-33
• LED

• Seven Segment Display

• Buzzer

• LCD

• Relay

• Stepper Motor

• Servo Motor

• DC Motor

1 SSG EMBEDDED SOLUTIONS | Ph. No. 7123559635

Introduction

The PIC microcontroller from Microchip is one the famous and most used
microcontrollers. Because of its reliability it is commonly preferred by embedded
engineers for industrial applications. The PIC microcontroller PIC16f877a is one of the
most renowned microcontrollers in the industry. This microcontroller is very
convenient to use, the coding or programming of this controller is also easier.
The PIC16F877A Microcontroller consists of an inbuilt CPU, I/O ports, memory
organization, A/D converter, timers/counters, interrupts, serial communication,
oscillator and CCP module which to gather makes the IC a powerful microcontroller
for beginners to start with. The general block diagram of the PIC Architecture is shown
below.

One of the main advantages is that it can be write-erase as many times as possible
because it uses FLASH memory technology. It has a total number of 40 pins and there
are 33 pins for input and output. PIC16F877A is used in many pic microcontroller
projects. PIC16F877A also have much application in digital electronics circuits.

http://microcontrollerslab.com/pic-microcontroller-projects-for-eee-students/
http://microcontrollerslab.com/pic-microcontroller-projects-for-eee-students/
http://microcontrollerslab.com/electronics-projects/

2 SSG EMBEDDED SOLUTIONS | Ph. No. 7123559635

Pin Diagram

Specifications

• 8K of Code space

• 256 Bytes of EEPROM

• 384 bytes SRAM

• 8-level deep hardware stack

• Up to 20 MHz clock

• 1 16-bit, 2 8-bit timers

• Synchronous Serial Port – SPI and I2C

• USART

• 8 channel, 10-bit ADC

• Brown-Out Reset

• 2 Analog Comparators

• Capture, Compare, PWM module

Application

PIC16F877A also have much application in digital electronics circuits. PIC16f877a

finds its applications in a huge number of devices. It is used in remote sensors,

security and safety devices, home automation and many industrial instruments.

3 SSG EMBEDDED SOLUTIONS | Ph. No. 7123559635

MPLAB IDE

Step 1: The first step is to run the MPLAB IDE.exe file on your desktop or whatever

the installation path is.

Step 2: From the “Project” choose “New Project”, Choose Embedded Standalone

Project. Then Next.

Step 3: Choose the family of the MCU which is 8-bit Mid-range. Then write the name

of the chip in the box below which will be PIC16F877A. Then Next.

4 SSG EMBEDDED SOLUTIONS | Ph. No. 7123559635

Step 4: Here you’ll choose the debugging hardware tool for your project Pick any

one then click Next.

Step 5: Choose the compiler for your project. We’ll be using XC8 compiler for our

projects. Then Next.

Step 6: Choose the path to save your project into. And give your project a relevant

name.

5 SSG EMBEDDED SOLUTIONS | Ph. No. 7123559635

Click Finish and you should see something like this screen down below.

Step 7: Now, let’s create the file in which we’ll write our source C-Code. Right-Click on

the source files and choose to create a new main.c file. And give it a relevant name.

It’s usually named as main.c

6 SSG EMBEDDED SOLUTIONS | Ph. No. 7123559635

XC8 Compiler

Step 1: Open browser and search XC8 compiler

Step 2: Click on MPLAB XC8 compiler

Step 3: After downloading open xc8 compiler

7 SSG EMBEDDED SOLUTIONS | Ph. No. 7123559635

Step 4: ready to install

Step 5: installation complete

NOTE:

PICKIT2 PROGRAMMER SETUP ARE GIVE IN TOOL FOLDER

MICROC IDE ALSO AVAILABLE FOR PIC CONTROLLER

8 SSG EMBEDDED SOLUTIONS | Ph. No. 7123559635

LED

It is most widely used semiconductor which emit either visible light or invisible

infrared light when forward biased. Remote controls generate invisible light. A Light

emitting diodes (LED) is an optical electrical energy into light energy when voltage is

applied.

These are the applications of LEDs:

• Digital computers and calculators.

• Traffic signals and Burglar alarms systems.

• Camera flashes and automotive heat lamps

• Picture phones and digital watches.

LED Schematic

9 SSG EMBEDDED SOLUTIONS | Ph. No. 7123559635

LED Code

#define _XTAL_FREQ 4000000

#include <xc.h>

void init_config(void);

// CONFIG

#pragma config FOSC = XT // Oscillator Selection bits (XT oscillator)

#pragma config WDTE = ON // Watchdog Timer Enable bit (WDT enabled)

#pragma config PWRTE = OFF // Power-up Timer Enable bit (PWRT disabled)

#pragma config BOREN = ON // Brown-out Reset Enable bit (BOR enabled)

#pragma config LVP = OFF // Low-Voltage (Single-Supply) In-Circuit

Serial Programming Enable bit (RB3 is digital I/O, HV on MCLR must be used for

programming)

#pragma config CPD = OFF // Data EEPROM Memory Code Protection bit

(Data EEPROM code protection off)

#pragma config WRT = OFF // Flash Program Memory Write Enable bits

(Write protection off; all program memory may be written to by EECON control)

#pragma config CP = OFF // Flash Program Memory Code Protection bit

(Code protection off)

// #pragma config statements should precede project file includes.

// Use project enums instead of #define for ON and OFF.

#define LED_ARRAY_DDR TRISC

#define LED_ARRAY PORTC

int main()

{

init_config();

unsigned int delay;

unsigned char led_mask = 0b00000001; // Start with RC0 (bit 0)

while(1)

{LED_ARRAY = led_mask;

led_mask <<= 1; // Shift the mask to the left

if (led_mask == 0b00010000) // If all LEDs have been lit, reset to RC0

led_mask = 0b00000001;

for(delay = 10000; delay > 0; delay--);

}

}

void init_config(void)

{

LED_ARRAY_DDR = 0X00;

LED_ARRAY = 0x00;}

10 SSG EMBEDDED SOLUTIONS | 7123559635

Seven Segment Display

Seven segment displays are important display units in Electronics and widely used to

display numbers from 0 to 9. It can also display some character alphabets like

A,B,C,H,F,E etc. It’s the simplest unit to display numbers and characters. It just

consists 8 LEDs, each LED used to illuminate one segment of unit and the 8th LED used

to illuminate DOT in 7 segment display. We can refer each segment as a LINE, as we

can see there are 7 lines in the unit, which are used to display a number/character.

We can refer each line/segment "a,b,c,d,e,f,g" and for dot character we will use "h".

There are 10 pins, in which 8 pins are used to refer a,b,c,d,e,f,g and h/dp, the two

middle pins are common anode/cathode of all he LEDs. These common

anode/cathode are internally shorted so we need to connect only one COM pin.

There are two types of 7 segment displays: Common Anode and Common Cathode:

Common Anode: In this all the Negative terminals (cathode) of all the 8 LEDs are
connected together (see diagram below), named as COM. And all the positive
terminals are left alone.

Common Cathode: In this all the positive terminals (Anodes) of all the 8 LEDs are
connected together, named as COM. And all the negative thermals are left alone.

11 SSG EMBEDDED SOLUTIONS | 7123559635

Seven Segment Display Schematic

Seven Segment Display Code

// CONFIG

#pragma config FOSC = XT // Oscillator Selection bits (HS oscillator)

#pragma config WDTE = OFF // Watchdog Timer Enable bit (WDT disabled)

#pragma config PWRTE = OFF // Power-up Timer Enable bit (PWRT disabled)

#pragma config BOREN = OFF // Brown-out Reset Enable bit (BOR disabled)

#pragma config LVP = OFF // Low-Voltage (Single-Supply) In-Circuit

Serial Programming Enable bit (RB3 is digital I/O, HV on MCLR must be used for

programming)

#pragma config CPD = OFF // Data EEPROM Memory Code Protection bit

(Data EEPROM code protection off)

#pragma config WRT = OFF // Flash Program Memory Write Enable bits

(Write protection off; all program memory may be written to by EECON control)

#pragma config CP = OFF // Flash Program Memory Code Protection bit

(Code protection off)

// #pragma config statements should precede project file includes.

// Use project enums instead of #define for ON and OFF.

#include <xc.h>

#define _XTAL_FREQ 4000000 // 4MHz Crystal oscillator frequency (Change this

to match your oscillator)

#include <pic16f877a.h>

12 SSG EMBEDDED SOLUTIONS | 7123559635

#define bcd1 RD4

#define bcd2 RD5

#define bcd3 RD6

#define bcd4 RD7

void main()

{

// Set PORTD as input for BCD inputs

TRISD = 0x0F;

while(1)

{

// Display 0

bcd1 = 0;

bcd2 = 0;

bcd3 = 0;

bcd4 = 0;

 delay_ms(1000);

// Display 1

bcd1 = 1;

bcd2 = 0;

bcd3 = 0;

bcd4 = 0;

 delay_ms(1000);

// Display 2

bcd1 = 0;

bcd2 = 1;

bcd3 = 0;

bcd4 = 0;

 delay_ms(1000);

// Display 3

bcd1 = 1;

bcd2 = 1;

bcd3 = 0;

bcd4 = 0;

 delay_ms(1000);

// Display 4

bcd1 = 0;

bcd2 = 0;

bcd3 = 1;

bcd4 = 0;

13 SSG EMBEDDED SOLUTIONS | 7123559635

 delay_ms(1000);

// Display 5

bcd1 = 1;

bcd2 = 0;

bcd3 = 1;

bcd4 = 0;

 delay_ms(1000);

// Display 6

bcd1 = 0;

bcd2 = 1;

bcd3 = 1;

bcd4 = 0;

 delay_ms(1000);

// Display 7

bcd1 = 1;

bcd2 = 1;

bcd3 = 1;

bcd4 = 0;

 delay_ms(1000);

// Display 8

bcd1 = 0;

bcd2 = 0;

bcd3 = 0;

bcd4 = 1;

 delay_ms(1000);

// Display 9

bcd1 = 1;

bcd2 = 0;

bcd3 = 0;

bcd4 = 1;

 delay_ms(1000);

}

}

14 SSG EMBEDDED SOLUTIONS | 7123559635

Buzzer

A buzzer is an electronic device that generates sound by converting electrical energy

into sound energy. It typically consists of a piezoelectric crystal, which expands and

contracts when an alternating current is applied to it, creating sound waves.

Buzzers are commonly used in a wide range of applications such as alarms, timers,

and warning systems. They can also be used in electronic devices such as mobile

phones, computers, and other electronic devices to generate different sounds and

tones.

Buzzer Schematic

15 SSG EMBEDDED SOLUTIONS | 7123559635

// CONFIG

#pragma config FOSC = HS

#pragma config WDTE = OFF

#pragma config PWRTE = OFF

#pragma config BOREN = OFF

#pragma config LVP = OFF

// Oscillator Selection bits (HS oscillator)

// Watchdog Timer Enable bit (WDT disabled)

// Power-up Timer Enable bit (PWRT disabled)

// Brown-out Reset Enable bit (BOR disabled)

// Low-Voltage (Single-Supply) In-Circuit

Serial Programming Enable bit (RB3 is digital I/O, HV on MCLR must be used for

programming)

#pragma config CPD = OFF // Data EEPROM Memory Code Protection bit

(Data EEPROM code protection off)

#pragma config WRT = OFF // Flash Program Memory Write Enable bits

(Write protection off; all program memory may be written to by EECON control)

#pragma config CP = OFF // Flash Program Memory Code Protection bit

(Code protection off)

// #pragma config statements should precede project file includes.

// Use project enums instead of #define for ON and OFF.

#include <xc.h>

#define _XTAL_FREQ 4000000 // 20MHz crystal oscillator frequency

void main() {

TRISD0 = 0; // Set RB0 as an output

RD0 = 0; // Initially, turn off the buzzer

while (1) {

RD0 = 1; // Turn on the buzzer (active high)

 delay_ms(5000); // Delay for 500 ms (adjust as needed)

RD0 = 0; // Turn off the buzzer

 delay_ms(5000); // Delay for 500 ms (adjust as needed)

}

}

Buzzer Code

16 SSG EMBEDDED SOLUTIONS | 7123559635

LCD

The term LCD stands for liquid crystal display. It is one kind of electronic display

module used in an extensive range of applications like various circuits & devices like

mobile phones, calculators, computers, TV sets, etc. These displays are mainly

preferred for multi-segment light-emitting diodes and seven segments. The main

benefits of using this module are inexpensive; simply programmable, animations, and

there are no limitations for displaying custom characters, special and even

animations, etc.

The features of this LCD mainly include the following.

• The operating voltage of this LCD is 4.7V-5.3V
• It includes two rows where each row can produce 16-characters.
• The utilization of current is 1mA with no backlight
• Every character can be built with a 5×8 pixel box
• The alphanumeric LCDs alphabets & numbers
• Is display can work on two modes like 4-bit & 8-bit

https://www.elprocus.com/difference-alphanumeric-display-and-customized-lcd/
https://www.elprocus.com/light-emitting-diode-led-working-application/

17 SSG EMBEDDED SOLUTIONS | 7123559635

#include <stdio.h>

#include <stdlib.h>

#include <xc.h>

#include "config.h"

#define RS RB0

#define RW RB1

#define EN RB2

#define D4 RB4

#define D5 RB5

#define D6 RB6

#define D7 RB7

#include "lcd.h"

void main()

{

TRISB = 0x00;

Lcd_Init();

while(1)

{

Lcd_Clear();

Lcd_Set_Cursor(1,1);

Lcd_Write_String("Welcome");

LCD Schematic

LCD Code

18 SSG EMBEDDED SOLUTIONS | 7123559635

 delay_ms(2000);

Lcd_Set_Cursor(1,1);

Lcd_Write_String("All");

Lcd_Clear();

Lcd_Set_Cursor(2,1);

Lcd_Write_String("..Hello World..");

for(int i=0; i<14; i++)

{

 delay_ms(350);

Lcd_Shift_Right();

}

for(int i=0; i<14; i++)

{

 delay_ms(350);

Lcd_Shift_Left();

}

}

}

19 SSG EMBEDDED SOLUTIONS | 7123559635

Relay

Relays are the switches that aim at closing and opening the circuits electronically as
well as electromechanically. It controls the opening and closing of the circuit contacts
of an electronic circuit. When the relay contact is open (NO), the relay isn’t energized
with the open contact. However, if it is closed (NC), the relay isn’t energized given the
closed contact. However, when energy (electricity or charge) is supplied, the states are
prone to change.

Relays are normally used in the control panels, manufacturing, and building
automation to control the power along with switching the smaller current values in a
control circuit. However, the supply of amplifying effect can help control the large
amperes and voltages because if low voltage is applied to the relay coil, a large voltage
can be switched by the contacts.

20 SSG EMBEDDED SOLUTIONS | 7123559635

Relay Schematic

Relay Code

// CONFIG

#pragma config FOSC = XT // Oscillator Selection bits (HS oscillator)

#pragma config WDTE = OFF // Watchdog Timer Enable bit (WDT disabled)

#pragma config PWRTE = OFF // Power-up Timer Enable bit (PWRT disabled)

#pragma config BOREN = ON // Brown-out Reset Enable bit (BOR enabled)

#pragma config LVP = OFF // Low-Voltage (Single-Supply) In-Circuit

Serial Programming Enable bit (RB3/PGM pin has PGM function; low-voltage

programming enabled)

#pragma config CPD = OFF // Data EEPROM Memory Code Protection bit

(Data EEPROM code protection off)

#pragma config WRT = OFF // Flash Program Memory Write Enable bits

(Write protection off; all program memory may be written to by EECON control)

#pragma config CP = OFF // Flash Program Memory Code Protection bit

(Code protection off)

21 SSG EMBEDDED SOLUTIONS | 7123559635

#include <xc.h>

// Hardware related definition

#define _XTAL_FREQ 4000000 // Crystal Frequency, used in delay

#define RELAY RB0

void main(void)

{

RELAY = 0;

TRISB0 = 0x00;

while(1) {

// Toggle the relay state based on the LED state

RELAY = 1;

 delay_ms(500);

RELAY = 0;

 delay_ms(500);

}

return;

}

22 SSG EMBEDDED SOLUTIONS | 7123559635

Stepper Motor

Stepper Motor is a brushless DC Motor. Control signals are applied to stepper motor

to rotate it in steps.

Its speed of rotation depends upon rate at which control signals are applied. There

are various stepper motors available with minimum required step angle.

Stepper motor is made up of mainly two parts, a stator and rotor. Stator is of coil

winding and rotor is mostly permanent magnet or ferromagnetic material.

Step angle is the minimum angle that stepper motor will cover within one

move/step. Number of steps required to complete one rotation depends upon step

angle. Depending upon stepper motor configuration, step angle varies e.g. 0.72°,

3.8°, 3.75°, 7.5°, 35° etc.

Stepper Motor Schematic

23 SSG EMBEDDED SOLUTIONS | 7123559635

Stepper Motor Code

#include <xc.h>

#include <stdio.h>

#include "config.h"

#define _XTAL_FREQ 4000000

#define speed 1 // Speed Range 10 to 1 10 = lowest , 1 = highest

#define steps 250 // how much step it will take

#define clockwise 0 // clockwise direction macro

#define anti_clockwise 1 // anti clockwise direction macro

//FUNCTION TO OPERATE MOTOR

void system_init (void); // This function will initialise the ports.

void full_drive (char direction); // This function will drive the motor in

full drive mode

void half_drive (char direction); // This function will drive the motor in

full drive mode

void wave_drive (char direction); // This function will drive the motor in

full drive mode

void ms_delay(unsigned int val);

void main(void)

{

system_init();

while(1){

/* Drive the motor in full drive mode clockwise */

for(int i=0;i<steps;i++)

{

24 SSG EMBEDDED SOLUTIONS | 7123559635

full_drive(clockwise);

}

ms_delay(1000);

/* Drive the motor in wave drive mode anti-clockwise */

for(int i=0;i<steps;i++)

{

wave_drive(anti_clockwise);

//full_drive(anti_clockwise);

}

ms_delay(1000);

}

}

/*System Initialising function to set the pin direction Input or Output*/

void system_init (void){

TRISB = 0x00; // PORT B as output port

PORTB = 0x0F;

}

/*This will drive the motor in full drive mode depending on the direction*/

void full_drive (char direction){

if (direction == anti_clockwise){

PORTB = 0b00000011;

ms_delay(speed);

PORTB = 0b00000110;

ms_delay(speed);

25 SSG EMBEDDED SOLUTIONS | 7123559635

PORTB = 0b00001100;

ms_delay(speed);

PORTB = 0b00001001;

ms_delay(speed);

PORTB = 0b00000011;

ms_delay(speed);

}

if (direction == clockwise){

PORTB = 0b00001001;

ms_delay(speed);

PORTB = 0b00001100;

ms_delay(speed);

PORTB = 0b00000110;

ms_delay(speed);

PORTB = 0b00000011;

ms_delay(speed);

PORTB = 0b00001001;

ms_delay(speed);

}

}

/* This method will drive the motor in half-drive mode using direction input

*/

void half_drive (char direction){

if (direction == anti_clockwise){

26 SSG EMBEDDED SOLUTIONS | 7123559635

PORTB = 0b00000001;

ms_delay(speed);

PORTB = 0b00000011;

ms_delay(speed);

PORTB = 0b00000010;

ms_delay(speed);

PORTB = 0b00000110;

ms_delay(speed);

PORTB = 0b00000100;

ms_delay(speed);

PORTB = 0b00001100;

ms_delay(speed);

PORTB = 0b00001000;

ms_delay(speed);

PORTB = 0b00001001;

ms_delay(speed);

}

if (direction == clockwise){

PORTB = 0b00001001;

ms_delay(speed);

PORTB = 0b00001000;

ms_delay(speed);

PORTB = 0b00001100;

27 SSG EMBEDDED SOLUTIONS | 7123559635

ms_delay(speed);

PORTB = 0b00000100;

ms_delay(speed);

PORTB = 0b00000110;

ms_delay(speed);

PORTB = 0b00000010;

ms_delay(speed);

PORTB = 0b00000011;

ms_delay(speed);

PORTB = 0b00000001;

ms_delay(speed);

}

}

/* This function will drive the the motor in wave drive mode with direction

input*/

void wave_drive (char direction){

if (direction == anti_clockwise)

{

PORTB = 0b00000001;

ms_delay(speed);

PORTB = 0b00000010;

ms_delay(speed);

PORTB = 0b00000100;

ms_delay(speed);

PORTB = 0b00001000;

ms_delay(speed);

28 SSG EMBEDDED SOLUTIONS | 7123559635

}

if (direction == clockwise){

PORTB = 0b00001000;

ms_delay(speed);

PORTB = 0b00000100;

ms_delay(speed);

PORTB = 0b00000010;

ms_delay(speed);

PORTB = 0b00000001;

ms_delay(speed);

}

}

/*This method will create required delay*/

void ms_delay(unsigned int val)

{

unsigned int i,j;

for(i=0;i<val;i++)

for(j=0;j<1650;j++);

}

29 SSG EMBEDDED SOLUTIONS | 7123559635

Servo Motor

Servo motor is an electrical device which can be used to rotate objects (like robotic

arm) precisely.Servo motor consists of DC motor with error sensing negative

feedback mechanism. This allows precise control over angular velocity and position

of motor. In some cases, AC motors are used.

It is a closed loop system where it uses negative feedback to control motion and final

position of the shaft.It is not used for continuous rotation like conventional AC/DC

motors.It has rotation angle that varies from 0° to 380°.

Servo Motor Schematic

30 SSG EMBEDDED SOLUTIONS | 7123559635

// CONFIG

#pragma config FOSC = XT

#pragma config WDTE = OFF

#pragma config PWRTE = OFF

#pragma config BOREN = OFF

#pragma config LVP = OFF

// Oscillator Selection bits (XT oscillator)

// Watchdog Timer Enable bit (WDT disabled)

// Power-up Timer Enable bit (PWRT disabled)

// Brown-out Reset Enable bit (BOR disabled)

// Low-Voltage (Single-Supply) In-Circuit

Serial Programming Enable bit (RB3 is digital I/O, HV on MCLR must be used for

programming)

#pragma config CPD = OFF // Data EEPROM Memory Code Protection bit

(Data EEPROM code protection off)

#pragma config WRT = OFF // Flash Program Memory Write Enable bits

(Write protection off; all program memory may be written to by EECON control)

#pragma config CP = OFF // Flash Program Memory Code Protection bit

(Code protection off)

// #pragma config statements should precede project file includes.

// Use project enums instead of #define for ON and OFF.

#include <xc.h>

#define _XTAL_FREQ 4000000

void servo0(){

unsigned int i;

for(i=0;i<50;i++)

{

PORTAbits.RA4 = 1;

 delay_us(800);

PORTAbits.RA4 = 0;

 delay_us(19200);}}

void servo90(){

unsigned int i;

for(i=0;i<50;i++)

{

PORTAbits.RA4 = 1;

 delay_us(1500);

PORTAbits.RA4 = 0;

 delay_us(18500);

}}

void servo180(){

Servo Motor Code

31 SSG EMBEDDED SOLUTIONS | 7123559635

unsigned int i;

for(i=0;i<50;i++)

{

PORTAbits.RA4 = 1;

 delay_us(2200);

PORTAbits.RA4 = 0;

 delay_us(17800);

}}

void main() {

TRISA4=0x00;

PORTAbits.RA4 = 0; // Ensure RA4 is initially low

while(1){

 delay_ms(1000);

servo0();

 delay_ms(1000);

servo90();

 delay_ms(1000);

servo180();

 delay_ms(1000);

}}

32 SSG EMBEDDED SOLUTIONS | 7123559635

DC Motor

DC motor uses Direct Current (electrical energy) to produce mechanical movement

i.e. rotational movement. When it converts electrical energy into mechanical energy

then it is called as DC motor and when it converts mechanical energy into electrical

energy then it is called as DC generator.

The working principle of DC motor is based on the fact that when a current carrying

conductor is placed in a magnetic field, it experiences a mechanical force and starts

rotating. Its direction of rotation depends upon Fleming’s Left Hand Rule.DC motors

are used in many applications like robot for movement control, toys, quadcopters,

CD/DVD disk drive in PCs/Laptops etc.

DC Motor Schematic

33 SSG EMBEDDED SOLUTIONS | 7123559635

// CONFIG

#pragma config FOSC = XT

#pragma config WDTE = OFF

#pragma config PWRTE = OFF

#pragma config BOREN = ON

#pragma config LVP = OFF

// Oscillator Selection bits (XT oscillator)

// Watchdog Timer Enable bit (WDT disabled)

// Power-up Timer Enable bit (PWRT disabled)

// Brown-out Reset Enable bit (BOR enabled)

// Low-Voltage (Single-Supply) In-Circuit

Serial Programming Enable bit (RB3 is digital I/O, HV on MCLR must be used for

programming)

#pragma config CPD = OFF // Data EEPROM Memory Code Protection bit

(Data EEPROM code protection off)

#pragma config WRT = OFF // Flash Program Memory Write Enable bits

(Write protection off; all program memory may be written to by EECON control)

#pragma config CP = OFF // Flash Program Memory Code Protection bit

(Code protection off)

// #pragma config statements should precede project file includes.

// Use project enums instead of #define for ON and OFF.

#include <xc.h>

#include <pic.h>

#define MOTOR1 RB3

#define MOTOR2 RB4

void main()

{

unsigned int i;

TRISB = 0x00;

while(1)

{

MOTOR1 = 1;

MOTOR2 = 0;

for (i=0; i<60; i++);

MOTOR1 = 0;

MOTOR2 = 1;

}

}

DC Motor Code

34 SSG EMBEDDED SOLUTIONS | 7123559635

